
Neural Networks 161 (2023) 515–524

s
o
t
T
w
F
b
i
2
f
m
e
o
h
r
r

g
(

h
0

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

The role of capacity constraints in Convolutional Neural Networks for
learning random versus natural data
Christian Tsvetkov a,∗, Gaurav Malhotra a, Benjamin D. Evans a,b, Jeffrey S. Bowers a

a School of Psychological Science, University of Bristol, 12a Priory Road, Bristol BS8 1TU, UK
b Department of Informatics, School of Engineering and Informatics, University of Sussex, Falmer, Brighton, BN1 9RH, UK

a r t i c l e i n f o

Article history:
Received 31 March 2022
Received in revised form 17November 2022
Accepted 11 January 2023
Available online 4 February 2023

Keywords:
Deep Neural Networks
Capacity
Biological constraints
Internal noise
Bottleneck

a b s t r a c t

Convolutional neural networks (CNNs) are often described as promising models of human vision,
yet they show many differences from human abilities. We focus on a superhuman capacity of top-
performing CNNs, namely, their ability to learn very large datasets of random patterns. We verify
that human learning on such tasks is extremely limited, even with few stimuli. We argue that the
performance difference is due to CNNs’ overcapacity and introduce biologically inspired mechanisms
to constrain it, while retaining the good test set generalisation to structured images as characteristic
of CNNs. We investigate the efficacy of adding noise to hidden units’ activations, restricting early
convolutional layers with a bottleneck, and using a bounded activation function. Internal noise was
the most potent intervention and the only one which, by itself, could reduce random data performance
in the tested models to chance levels. We also investigated whether networks with biologically inspired
capacity constraints show improved generalisation to out-of-distribution stimuli, however little benefit
was observed. Our results suggest that constraining networks with biologically motivated mechanisms
paves the way for closer correspondence between network and human performance, but the few
manipulations we have tested are only a small step towards that goal.

© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Convolutional Neural Networks (CNNs) are extraordinarily
uccessful in a diverse range of complex visual tasks such as
bject recognition, localisation, image segmentation and cap-
ioning (Chen et al., 2018; Ren et al., 2017; Tan & Le, 2021).
hese successes have inspired research exploring the extent to
hich CNNs and humans process visual information similarly.
or example, previous research has shown that CNNs provide the
est account of the representational geometry of object similarity
n primate inferotemporal cortex (Khaligh-Razavi & Kriegeskorte,
014). CNNs also outcompete alternatives in predicting neural
iring patterns in various areas of the ventral visual stream by
atching hidden layer activity to neural recordings (Schrimpf
t al., 2018; Yamins et al., 2014). Others studies have focused
n behavioural comparisons, showing some agreement between
umans and CNNs in object similarity judgements and shape
ecognition (Kubilius et al., 2016; Peterson et al., 2017). Such
esults have generated enthusiasm for the claim that CNNs are the
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leading model of the visual system (Kriegeskorte, 2015; Kubilius
et al., 2019).

However, for all these successes, there remain large gaps
between human behaviour and CNN performance. Most often,
this disconnect is observed in the form of mistakes of CNNs that
are uncharacteristic of human performance, such as differences
in how they classify adversarial images (Dujmović et al., 2020)
and differences in how humans and CNNs generalise outside their
training sets (Geirhos et al., 2018; Recht et al., 2019), with CNNs
frequently relying on ‘‘shortcuts’’, such as texture rather than
shape, to classify objects (Geirhos et al., 2020, 2019; Malhotra
et al., 2020).

There is a second, often overlooked kind of divergence be-
tween humans and CNNs — cases in which network performance
far surpasses human abilities. Though such high performance is
desirable from an engineering perspective, such phenomena pose
a challenge for the view that CNNs operate in a similar manner as
to humans. In this study, we focus on one such striking example:
CNNs that perform well on object classification with datasets of
labelled natural images can also learn to classify large datasets of
images with random pixel intensities (which to a human observer
look like images of TV-static), or natural image datasets with
arbitrary mappings between inputs and category labels (Zhang
et al., 2017). Indeed, the models even learned to classify ∼1
million such random inputs into 1,000 categories, conditions that
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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arallel the ImageNet dataset (Deng et al., 2009). These random
datasets required only a small multiple of additional presenta-
tions (<5) compared to the unmodified ImageNet dataset (Zhang
et al., 2017) in order to achieve similar levels of success, with the
random pixel images being slightly easier than the shuffled labels.
It seems unlikely that humans could do nearly so well under these
conditions, especially in the case of the random pixel images.

In this study, we systematically assessed the disconnect be-
tween CNNs and human performance on these datasets and ex-
plored what conditions can make models perform more like
humans. First, we ran a behavioural experiment to confirm that
humans are indeed much worse than CNNs in classifying random
datasets like those described by Zhang et al. (2017). Next, we
investigated why human behaviour diverges so strikingly from
CNNs. One possibility is that these differences arise from the
vast difference in their visual experiences: While humans have
had a lifetime of perceiving structured visual data, CNNs begin
training as a ‘blank-slate’. Alternatively, the discrepancy reflects
fundamental differences in the processing capacity of CNNs and
the human visual system. To explore these ideas we looked at
the effect of pre-training CNNs on structured data and compared
it to the effect of introducing three biologically relevant capacity
constraints — internal noise, bottlenecks and activation functions
— to their architectures. We observed that pre-training CNNs
on structured data does not reduce their super-human capacity
(pre-trained networks in fact became faster at learning random
datasets), while adding biologically relevant capacity constraints
selectively diminished their ability to learn random data. Finally,
we explored whether training models with biologically motivated
capacity constraints improved their correspondence with human
performance in other respects, specifically, in their ability to gen-
eralise to out-of-distribution data, such as adding salt-and-pepper
or uniform noise to images. However, with minor exceptions,
the constrained networks failed to show improvements in gen-
eralisation accuracy compared to baseline models. Together, our
findings highlight the importance of adding biological constraints
to CNNs in order to match human limitations in classifying ran-
dom data, but also show that additional innovations are required
to improve the generalisation capacities of CNNs.

2. How well can humans learn random categories?

In previous work, Zhang et al. (2017) trained CNNs on two
datasets. One dataset contained images with pixel intensities
that were randomly sampled so that each image was akin to a
randomly generated vector. These images were then randomly
assigned to one of multiple categories. We call this the ‘random
pixel condition’. The other dataset consisted of naturalistic images
from either the CIFAR-10 or ImageNet dataset, which were
randomly assigned to one of the categories at the start of the
experiment. Accordingly, images that were members of the same
class in the original dataset (e.g., two different images of a plane)
could be assigned to different categories, whereas images that
belonged to different categories in the original dataset (e.g., an
image of a plane and an image of a horse) could be assigned
to the same class. We call this condition the ‘shuffled labels’
condition. Zhang et al. (2017) showed that CNNs with different
architectures can learn to categorise images from both datasets,
even when these datasets contained more than a million images.1
The authors also found that CNNs learned to categorise the ran-
dom pixel dataset more quickly (i.e., fewer training epochs were

1 Learning random datasets was characterised as memorisation (Arpit et al.,
017; Zhang et al., 2017), but we note that, while CNNs trained on these datasets
annot generalise to entirely new examples, they do generalise to perturbed
xemplars of studied items. See Appendix B.
516
needed to converge to peak performance) than the shuffled label
dataset.

In order to assess how humans learn random data we mea-
sured the ability of humans to perform a task similar to that
which the networks in Zhang et al. (2017) had been trained
on, but limited the training set to far fewer images on the as-
sumption that humans cannot learn to classify over 1 million
random images (due to human capacity limitations). This proce-
dure involved categorising either random pixel images or images
with shuffled labels. In both conditions the categories lacked any
category-defining features.

2.1. Methods

We recruited 41 participants using the online platform Prolific
(https://www.prolific.co) and randomly assigned each participant
to either the random pixel condition or shuffled labels condition.
Participants in both conditions completed a categorisation task
in which they were asked to learn how to classify 20 images. In
each condition, these 20 images were randomly selected from a
larger dataset and assigned to one of two categories (10 images
per category). Images used in the shuffled labels condition were
taken from the Novel Objects and Unusual Names (NOUN) version
2 dataset (Horst & Hout, 2016) and randomly assigned to one
of the two categories. This dataset comprises of photographs of
inanimate objects which have been judged as being novel using
an inter-rater naming consensus (Horst & Hout, 2016) (see Fig. 1,
dataset II). The novelty of these images ensures that images are
unfamiliar to humans. The objects depicted in the images did not
share defining features with each other, making this a challenging
task to learn (although CNNs can learn an even more challeng-
ing task where images with similar features were assigned to
different categories).

Images in the random pixel condition were generated by
drawing samples from Gaussian distributions for each colour
channel, with the mean and standard deviation of each matching
the values derived from the CIFAR-10 dataset (Krizhevsky et al.,
2009). The generated images were sized 32 by 32 pixels to match
the size of CIFAR-10 images used in the simulations of Zhang
et al. (2017). To overcome any confounding effects of visual
acuity of participants, these images were then upscaled (without
smoothing) to 224 by 224 pixels. Some examples of these images
are shown in Fig. 1, dataset I.

Participants were instructed to indicate the categories by
pressing either ‘x’ or ‘z’ on their keyboard. On each trial, a fixation
ross was presented on the screen for 250 ms. Afterwards, each
timulus was displayed for 300 ms. All stimuli were presented on
neutral grey background. Trials were separated by a presenta-

ion of an empty neutral grey screen for 500 ms. Responses within
he first 150 ms of presentations were considered too quick and
warning message was displayed to participants to pay more
ttention to the stimulus before responding. These trials were not
onsidered for analysis. Similarly, we took responses longer than
000 ms as evidence that participants were not attending and
hese trials were also excluded.

Participants first completed a ‘training’ phase, receiving feed-
ack about their response for each trial. The training phase con-
isted of 300 trials for the shuffled labels condition and 500 trials
or the random pixel images condition. The larger number of
rials for the random pixel images condition was motivated by a
ilot study that showed participants struggled to learn this task
nd we wanted to ensure that they received sufficient training.
reaks of up to 5 min were included midway through, and upon
ompletion of the training trials. Participants then completed a
test’ phase, in which they no longer received any feedback, with
he number of trials equal to 20% of training trials (60 and 100
rials, respectively).

https://www.prolific.co
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Fig. 1. Examples of (I) random pixel images and (II) novel object images shown in the ‘shuffled labels’ condition in the behavioural experiment. Stimuli were
andomly assigned to one of two categories, A or B. The stimulus selection and category assignment was different for every participant — e.g., the labels given to
articipant 1 were not the same as those given to participant 2.
Fig. 2. Humans do not improve much over chance levels when classifying
random pixel images. Boxes show average accuracy for the second half of the
training phase (blue) and the test phase (orange).

2.2. Results and discussion

We computed the average categorisation accuracy of partici-
ants for the second half of the training phase and for the test
hase (Fig. 2). In the test phase of the random pixel condition,
articipants’ accuracy (M = 0.529, SD = 0.11) was not statistically
ifferent from chance (One-sample t-test, two-tailed, t(20) =

1.229, p = 0.233). In contrast, most subjects learned to categorise
the images in the shuffled labels condition (M = 0.895, SD =
0.157). The difference in accuracy between the two groups was
statistically significant (two-tailed, t(40) = 8.639, p < 0.001,
Cohen’s d = 2.699, 95%CI=[1.825; 3.572]).

The results of the behavioural experiments match our ex-
pectations. Participants were near or at chance performance in
categorising the 20 random pixel images into two categories,
517
even after 500 learning trials. Three individuals who succeeded
in achieving above-chance performance were invited to answer
a post-experiment debrief question about what strategy they
used to complete the task. Out of three participants, two replied,
specifying they tried to distinguish stimuli by focusing only on
certain patches within the images (such as the top-left quad-
rant) and paying attention to the local properties of that region
(e.g. ‘‘This one had more red overall’’), rather than paying atten-
tion to individual pixels. Although these heuristics allowed some
participants to achieve an above chance performance in a 2-way
categorisation task involving a small dataset of 20 images, they
would become much more difficult to execute when increasing
the number of examples or categories. Scaling the strategy to a
1,000-way classification of ∼1 million images is infeasible.

In contrast to the random pixel condition, almost all partic-
ipants were able to learn to classify the 20 novel objects into
two categories in the shuffled labels condition with over 80%
accuracy in the test phase. It is unlikely humans can rival the
capacity of a network to learn to classify ∼1 million images
into 1,000 random categories, but the results showed another
disconnect between humans and neural networks — humans find
it more difficult to learn to classify random pixel images than
novel objects with shuffled labels, whereas Zhang et al. (2017)
observed that models did not show any preference for learning
the structured data (shuffled labels) compared to random pix-
els. Indeed, CNNs took longer to learn to categorise stimuli in
the shuffled labels condition compared with the random pixel
condition. Together, these results highlight a fundamental mis-
alignment in information processing between the models and the
human visual system.

3. Improving correspondence between networks and human
behaviour

The experiment in Section 2 established two types of differ-
ences between humans and CNNs, namely, (a) humans struggle
to learn even a small set of unstructured data (random pixels
condition), while CNNs are much better at learning this type
of data, and (b) humans are better at learning structured data
that is randomly assigned to categories (shuffled labels condition)
while CNNs are equally capable of learning both naturalistic
images with shuffled labels and unnatural images with random
pixels (Zhang et al., 2017).
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Here we explore whether different training environments and
architectural modifications can make CNN performance more
qualitatively similar to the human results. First, in an attempt
to model the effect of human experience — participants spend
a lifetime classifying naturalistic images prior to taking part in
the experiment — we investigated whether pre-training CNNs
on datasets of naturalistic images limits the learnability of the
unstructured datasets. Second, we introduced various biologically
inspired constraints to CNNs designed to reduce network capacity
to learn unstructured data, namely, the introduction of processing
bottlenecks, internal noise, and bounded activation functions, as
detailed below.

3.1. The role of experience

The divergence in learning and memorisation abilities be-
tween humans and CNNs might be explained by the differences in
their visual experience. Living in a world of statistical regularities
and predictable structures, human beings learn and adapt to these
reliable features. One consequence of this could be becoming
less adept at dealing with information that lacks structure. For
example, experts in a given domain like chess are remarkably
better than novices in remembering and reconstructing chess-
board configurations from games, but perform on an equal footing
with less experienced players when reconstructing random con-
figurations of pieces (Chase & Simon, 1973). Indeed, the effects
of early visual experience on development and behaviour can be
profound. For example, limiting the visual experience of kittens
exclusively to either horizontal or vertical bars makes the animals
insensitive to the oriented stimuli that they were not previously
exposed to Blakemore and Cooper (1970). We examine whether a
comparable argument can be extended to CNNs. Does experience
with the natural world, operationalised as pre-training a network
on a dataset of natural image, set limits on what kind of data can
be further learned by that network? Would this experience cause
learning unstructured data, such as random pixel images, to be
more difficult?

3.1.1. Methods
We trained ResNet-50, a standard CNN architecture (He et al.,

2016), to classify either the shuffled label CIFAR-10 dataset or
random pixels images.2 In order to assess the impact of past
experience with structured data, we compared a baseline con-
dition in which the weights were randomly initialised (using
uniform Xavier initialisation (Glorot & Bengio, 2010)) to CNNs
with the weights learned by pre-training the network on the Im-
ageNet dataset (Deng et al., 2009), a large database of annotated
naturalistic images. For the pre-trained networks we included
two training conditions. In a transfer learning condition (Yosinski
et al., 2014), we ‘froze’ the weights of all convolutional and
pooling layers (meaning that these weights were not updated
during further training) and re-initialised the weights of the fully
connected layers. In a ‘fine-tuning’ condition we allowed all the
weights of the network to be modified during training, similar to
the baseline condition. We used three different seeds for every
condition. We trained the networks until convergence once for
every condition. As every network converged in under 70 epochs,
we used this as a boundary for the other two instances. Training
hyperparameters used in the simulations are listed in Appendix
F, Table F.1. The model architecture was modified by inserting
one hidden layer with 1024 units immediately prior to the output
layer, adding ∼2 million parameters to the network. This modifi-
cation was necessary because initial tests indicated that without

2 Research code for all simulations and analyses is available at https://github.
om/chris7sv/capacity_constraints.
 b
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it, when all convolutional layers in the network were frozen, none
of the datasets could converge to sufficiently high accuracy.

Images from CIFAR-10 were upsampled with smoothing
Burt & Adelson, 1983) from 32 × 32 pixels to 224 × 244 pixels to
atch the input size of the pre-trained networks. Random pixel

mages were created in resolution 32 × 32 pixels, then resized
ithout smoothing to 224 × 224, forming a grid of 32 squares of
ize 7 × 7. All images were represented in RGB format. The size
f the random pixel dataset matched the size of the CIFAR-10
raining data at 50,000 images. The datasets were the same in
ach iteration for all models.

.1.2. Results and discussion
We assessed the accuracy of the networks on the unmodi-

ied data, random pixel and shuffled labels datasets in the three
raining conditions (Fig. 3). Strikingly, pre-training the networks
n ImageNet did not prevent them from learning the random
atasets. Both random pixels images and shuffled labels data
ere eventually learned with perfect accuracy across all condi-
ions.3 While pre-training accelerated learning on the structured
CIFAR-10) dataset, it also made learning faster on the unstruc-
ured datasets, for both the fine-tuning and transfer learning
onditions. Crucially, we did not observe an interaction between
re-training and the type of data being learned. That is, we did
ot find pre-training to be preferentially beneficial to the speed
f learning the CIFAR-10 dataset compared to the random pixels
ataset.
These results do not corroborate the hypothesis that experi-

nce with natural images restricts the network’s ability to learn
andom data. Indeed, the networks pre-trained with ImageNet
earned the random dataset faster than those with randomly
nitialised weights.

.2. The role of biological constraints

Next, we investigated whether introducing
iologically-inspired constraints would limit the capacity of CNNs
o learn random data. We experimented with three such con-
traints (see Fig. 4).
First, we introduced internal noise — or variability — in the

ctivations of units in the CNN. There are various sources of
nternal noise in the brain. For example, it is a long-standing
bservation that presentation of the same stimulus can often
esult in different neural response patterns (Stein et al., 2005).
his variability can be observed at multiple spatial and temporal
cales, caused by environmental factors or specific cell properties.
he largest source of neuronal noise is synaptic, produced by
tochasticity in neurotransmitter release, which can have a sub-
tantial net effect on the behaviour of post-synaptic cells (Stein
t al., 2005). Adding internal noise to the activation values of
idden units in a neural network reduces the precision of the
ignal, and in turn, may reduce the capacity of the network to
ncode large numbers of random categories. If the precision of
etwork computations is more critical for the random datasets
ue to the networks having to rely on fine-grained idiosyncrasies
n the data, then internal noise should start to drown this delicate
ignal and selectively limit CNNs’ ability to classify random data.
Another biologically inspired concept we explored is a bot-

leneck in a hidden layer. Bottlenecks could, in principle, play a
ivotal role in reducing representational complexity to allow ef-
icient processing in the perceptual system (Essen et al., 1991) by

3 Note that, unlike the findings of Zhang et al. (2017), the networks trained
n the shuffled labels dataset converged faster than those trained on random
ixel images. We found that this relationship was not a robust one, and varied
ased on e.g., the choice of architecture, or even the learning rate.

https://github.com/chris7sv/capacity_constraints
https://github.com/chris7sv/capacity_constraints
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Fig. 3. Pre-training on ImageNet does not prevent learning random data. Training accuracy is shown for ResNet-50 networks trained to classify either unmodified
IFAR-10 (blue), the same dataset with shuffled labels (green), or Random pixel images (orange). The models were either trained from a random initialisation (Left),

or were pre-trained on ImageNet, fine-tuning the entire network (Right), or transfer learning: freezing the convolutional weights and training only the classifier
(Centre).
discarding irrelevant details and passing on the most reliable and
robust features of the inputs (Evans et al., 2022). We hypothesised
that if category members share some regular features — as is the
case with CIFAR-10 categories — a bottleneck should encourage
these features to be discovered, leading to robust representations.
On the other hand, if no common features for each category can
be detected, then a bottleneck is expected to have a large impact
on network performance.

Lastly, we considered the role of the activation function on
a neural network’s capacity. Typically, modern deep learning
models use activation functions which permit a large range of
activations. For example, the rectified linear (ReLU) units lead
to output activations that are bounded at the lower end but
unbounded at the upper end. In contrast, the Sigmoid activation
function, which is often encountered in connectionist models
of cognitive processes and neurophysiological models of neural
population dynamics (Wilson & Cowan, 1972), bounds output
activation at both the lower as well as the upper end. Although
there is lack of consensus about the biological plausibility of
Sigmoid versus ReLu activation functions (see Glorot et al., 2011),
we focus on the effect of their range on regulating the capacity for
representing information. The activation of ReLU units can grow
as large as needed, and their representational capacity is only
limited by the degree of precision imposed by the numeric data.
Units using the Sigmoid activation function, on the other hand,
have their output values limited within the range (0, 1). When
paired with the limited precision caused by floating-point oper-
ations in computers, they therefore provide a natural constraint
on the representational capacity of these units.

3.2.1. Methods
We used two model architectures, small-inception and

small-alexnet, adapted from Zhang et al. (2017, p. 12). These
models were not pre-trained as in Section 3.1, but started with
randomly initialised weights. While the investigation into the
role of experience demanded working with models pre-trained
on a large natural image dataset, the architectures selected for
this study are scaled down versions of popular models, reduc-
ing computational demands. This reduction in trainable param-
eters permits a wider and more thorough exploration of relevant
conditions and hyperparameters.4

We implemented internal noise by adding random values
drawn from a Gaussian distribution (µ = 0, σ = [0 : x]) to
the output of the activation function of every hidden unit in the

4 We have successfully replicated the results of these simulations with
enseNet (Huang et al., 2016) and MobileNet (Howard et al., 2017), see
ppendix E.
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Fig. 4. Illustration of biologically-motivated capacity constraints. Gaussian noise
(σ ) was added to the output of activation functions of hidden units. Hidden
units had Sigmoid instead of ReLU activation function (f ). The bottleneck (B) was
introduced by reducing the number of convolutional filters in a layer, modifying
the architecture of the network.

neural network.5 We varied the standard deviation of internal
noise (σ ) from 0–1.2, with an increment of 0.05 for networks
using ReLU activation units, and from 0–0.2, in 0.02 steps for
Sigmoid networks.

Inspired by Lindsey et al. (2019), we implemented a bottleneck
by reducing the number of convolutional filters in the first convo-
lutional layer. This procedure aims to model the reduction from
photoreceptors to ganglion cells in the retina. We experimented
with several values for the number of filters in the bottleneck
and settled on the smallest number possible without drastically
impairing performance on the CIFAR-10 validation data. As a
result, we reduced the number of filters in small-inception
from 96 → 2 and from 200 → 8 for small-alexnet.6 Although
this manipulation only reduces the total number of trainable
parameters by a small amount, it has been demonstrated to qual-
itatively alter the types of filters learned in early convolutional
layers, resulting in the development of centre–surround receptive
fields in the first layer and a prevalence of Gabor-like filters in
subsequent layers, similar to what is observed in the human
visual system (Lindsey et al., 2019).

We generated model instances for all four combinations of
the activation (ReLU or Sigmoid) and bottleneck (yes or no) con-
straints. Each network instance was trained to classify the three

5 Implemented as a regularisation layer from tensorflow.keras module.
6 See Appendix G for results from these experiments.
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Fig. 5. Top: Training with biological constraints severely reduces CNNs’ ability to learn random datasets. These figures represent the results described in Section 3.2.
Left: ReLU activation function. Right: Sigmoid activation function. The graphs show the impact of the capacity manipulations on training accuracy (y-axis) for the
hree types of datasets (blue: unmodified CIFAR-10; green: modified CIFAR-10 with shuffled labels; orange: dataset of random pixels images). The internal noise
evels used are plotted on the x-axis. Solid lines indicate model accuracy for models without a bottleneck; dashed lines indicate models with a bottleneck. Bottom:
CNNs trained on smaller datasets require greater values of internal noise for random dataset learning to decrease. The figures represent the results described in
Section 3.3.
types of datasets described in Section 3.1: (a) the unmodified
CIFAR-10 dataset, (b) a version of the CIFAR-10 dataset with
shuffled labels (c) random pixel images. Like the simulations in
Section 3.1, we trained the networks until convergence. Both
networks converged under 100 epochs for all data types. Subse-
quently we used 100 epochs as a boundary in further runs. We
used a batch size of 128 (39,000 steps).7 We used learning rates
hich lead to the fastest convergence on all datasets (determined
mpirically; lr = 0.1 for small-inception and lr = 0.01 for
mall-alexnet). A step decay algorithm was used to decrease
earning rate by 5% after each epoch. Further information about
he hyperparameters used in these simulations can be obtained in
ppendix F, Table F.1. Internal noise was added to the output of
he activation function of each hidden unit in every convolutional
r fully-connected layer of the CNNs. All results were averaged
ver four different random seeds for each network instance, with
ew random pixel images and a shuffled labels permutation for
very seed. The same hyperparameters were used for all datasets
nd seeds.

.2.2. Results and discussion
Results from all simulations are summarised in Fig. 5 (top

ow), which shows accuracy on the training set after 100 train-
ng epochs for all three datasets for the small-inception ar-
hitecture. Each panel plots the accuracy after 100 epochs as
function of the internal noise. Performance on the CIFAR-
0, random pixel and shuffled labels datasets are shown using
lue, orange and green lines. Bold lines show performance with-
ut a bottleneck while dashed lines show performance using a
ottleneck.8

7 To confirm our results were not due to insufficient training, we repeated
ll simulations for 200 epochs. Results are identical with those described in this
ection (see Appendix D).
8 Results for small-alexnet are qualitatively similar — see Appendix A.
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We observed that internal noise had a large, selective effect on
the ability of the network to learn the two unstructured datasets.
That is, within the explored range of values, noise had little
impact on the training set classification accuracy for CIFAR-10
images (although the effect was more noticeable for small-
alexnet networks). On the other hand, increasing noise values
progressively hindered performance on the random pixel and
shuffled labels conditions, with training accuracy quickly drop-
ping to chance. Comparing networks using ReLU hidden units
with those using Sigmoid units, it appears changing the activation
function, by itself, did not impact the ability of the networks to
learn to classify the random datasets. However, the activation
function interacted with the networks’ tolerance to internal noise,
with ReLU unit networks requiring ∼ 5 times more noise com-
pared with Sigmoid units to produce a similar decline in accuracy
for the random pixels and shuffled labels conditions (see different
scales on x-axes). Nevertheless, the same pattern of results was
obtained with the two activation functions, with a selective effect
of increased noise on the two unstructured datasets but little
impact on classifying CIFAR-10 images.

We also observed that the bottleneck manipulation was not
sufficient to prevent learning of unstructured data on its own, al-
though its effect interacted with the degree of internal noise and
the activation function. That is, for networks with a bottleneck,
a slightly lower internal noise value was needed to prevent the
network from learning unstructured data.

3.3. Does noise affect capacity?

The findings in Section 3.2 suggest that adding internal noise
to the activations of hidden units was the most effective method
for reducing CNNs’ ability to learn random datasets. The next step
was to work out why it was effective. Our hypothesis was that
this is because noise decreases capacity. If this is the case, then
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ven after inserting noise the network should be able to learn the
andom pixel and shuffled labels datasets, as long as they do not
xceed the now lowered capacity. We manipulated this demand
n the network by decreasing the number of exemplars in each
ategory.
We trained the same model architectures used in Section 3.2

n identical tasks — classifying CIFAR-10 images with either
unmodified or shuffled labels, as well as random pixel images.
However, we reduced the size of the datasets so that each class
contains fewer examples than the full dataset. Lowering the size
of the dataset lowers the difficulty of the problem the network
has to solve because the model has to fit fewer data points. We
hypothesised that if adding internal noise affects capacity, then by
reducing the dataset size, and therefore task difficulty, the level of
internal noise necessary to suppress random data learning would
increase. For example, if CNNs with internal noise σfull were no
longer able to learn a dataset of 50,000 random pixel images, they
could still learn a smaller dataset of, e.g., 1,000 examples. That
is, a larger noise value, σpart (σpart > σfull) would be required to
prevent the CNNs from learning the smaller dataset.

3.3.1. Method
We recreated the simulations in Section 3.2, using the same

network architectures, but decreased the number of classes and
examples per class in each dataset. For the unmodified CIFAR-10
and the shuffled labels conditions, a stratified sampling procedure
was used to ensure an equal number of examples were sampled
from each class. For the random pixels condition, an appropriate
number of images were generated and randomly assigned to
each class. The tested datasets consisted of 10 classes, with 100
examples per class.

Training the neural networks on the smaller dataset with
the same batch size and number of training epochs used when
training on the full dataset would result in overall fewer weight
updates. Therefore, we scaled the number of training epochs and
the batch size, so that networks learning the smaller dataset
would have the same number of training steps as those trained
on the full dataset. See Appendix F for specific values.

3.3.2. Results and discussion
The pattern of results corroborates our hypothesis, with

greater values of internal noise needed to prevent CNNs from
learning the unstructured datasets. This is easily seen when
compared with results from training on the datasets of 50,000
images used in Simulation 3.2 on the top row of (Fig. 5).9

There was another interesting, unanticipated effect of training
the models with smaller datasets, namely, the relative difficulty
of learning random pixels versus shuffled labels swapped when
trained on 100 compared to 5,000 images per category in the
ReLU condition. However, we do not consider this finding to be
robust, as the results were less clear in the Sigmoid condition.
We also found that the relative difficulty of the two random
conditions varied in the pre-training simulations in Section 3.1,
influenced by various factors such as hyperparameter choice. We
do not have a good explanation for this effect, but a successful
model of human vision should not only explain the very limited
capacity of humans to learn unstructured data, but also the much
greater difficulty humans experience in learning the random pixel
stimuli. Although our introduction of biological constraints is a
step in the right direction, we have not identified a condition
that allows to disassociate the ability to learn these two forms
of random data within the existing CNN framework.

9 See Appendix A, Figure A.1 for comparable results for small-alexnet
odels.
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4. Do capacity constraints improve generalisation?

In the simulations in Sections 3.2 and 3.3 we have shown
how adding biologically motivated constraints makes CNNs more
similar to humans in that the neural networks’ capacity to learn
random data is reduced without a notable disruption to their abil-
ity to classify natural images. We now consider whether learning
with these constraints has consequences for other areas where
correspondence between CNN and human performance is lacking,
namely, out-of-distribution (o.o.d.) generalisation. That is, CNNs
struggle to generalise to images that differ in their statistics from
images that the network was trained on (Geirhos et al., 2018;
Sinz et al., 2019). Here, we look at the performance of CNNs
when presented with images that have been manipulated with
image distortions not observed during training. This problem is
challenging for CNNs, with performance of models degrading
rapidly after even small amounts of image distortions or other
perturbations (Geirhos et al., 2019). Human performance also
deteriorates under these conditions, but more smoothly and to
a much lesser extent (Geirhos et al., 2019). We tested whether
training CNNs with resource capacities limited by biologically-
inspired constraints on naturalistic data will force the networks to
learn more general representations that support improved o.o.d.
generalisation.

4.1. Methods

To test o.o.d. generalisation, we followed the method used
by Geirhos et al. (2019) to modify the CIFAR-10 test set. We
created two test sets, each of which converted images from the
CIFAR-10 test set to greyscale and added a type of noise that
was not seen during training. In the first set, we added uniform
(zero-centred) noise to each image — that is, we modified each
pixel by a random value drawn from the distribution [−a, +a], in
which we varied the value a in the range [0, 0.5] in increments
of 0.05. In the second dataset, we applied salt-and-pepper noise
to each image, where each pixel of an image can be switched to
black or white with a defined probability, p, in the range [0, 0.5],
varied in increments of 0.05 (5%). Examples of both types of image
degradation are shown in Fig. 6.

We trained the same set of CNN architectures as in Section 3.2,
using the same hyperparameter values, to classify the unmodified
CIFAR-10 training set and tested each model instance on the two
o.o.d. generalisation test sets. We trained the networks with every
combination of constraints — using either ReLU or Sigmoid unit
activation, with or without a bottleneck, while varying the level of
internal noise. The results were averaged over four random seeds
for each network.

4.2. Results and discussion

Fig. 7 shows the change in generalisation accuracy for small-
inception networks, trained with a particular value of internal
noise, relative to a baseline network trained without activation
noise.10 The inset shows the change in accuracy from the baseline
model. Consistent with previous findings (Geirhos et al., 2018),
the networks are not much affected by the very low levels of
image degradation, but increasing it even slightly further rapidly
lowers the accuracy of all models to chance performance (10%).
In contrast, human performance decreases much more gradually
with increased degradation (Geirhos et al., 2018).

For the networks with ReLU activation, the accuracy of the
models with internal noise was 5–10% lower than the perfor-
mance of the baseline models, for both additive uniform and

10 See Appendix C for results for models with bottleneck.
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Fig. 6. Example CIFAR-10 images with different amounts of salt and pepper noise (top) or uniform noise (bottom).
Fig. 7. small-inception networks with internal noise have better generalisation for low levels of input degradation for Sigmoid (teal), but not ReLU (pink) activation
function. Left: Uniform noise. Right: Salt-and-pepper noise. Solid lines represent baseline models trained without constraints. Dashed lines represent networks trained
with one specific noise level (0.5 for ReLU and 0.12 for Sigmoid). Insets highlight deviation of models with internal noise from the baseline model (distance from
the midline). So values above the x-axis show a better performance compared to baseline while values below show a worse performance.
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alt-and-pepper degradation. That is, training with noise offered
o advantage in generalisation to these images. On the other
and, the CNNs using sigmoid activations and internal noise did
how improvement over the baseline model for both types of
egradation (see Insets in Fig. 7). The size of the effect was small
or uniform noise (<5%) and somewhat larger for salt-and-pepper
oise (∼10%). The magnitude of the effect was also enhanced
y the addition of a bottleneck (Appendix C, Figure C.2). How-
ver, this advantage was observed only for low levels of image
egradation and quickly disappeared as the performance of all
odels deteriorated. Furthermore, the advantage was either not
bserved, or considerably smaller for small-alexnet networks
see Appendix A, Figure A.2).

The constraints appear to have slightly improved generalisa-
ion abilities for some combinations of conditions, but not for
thers, and only for some low levels of noise. As the advantage is
urther contingent on factors such as the model architecture, we
onclude that the results do not support our prediction that train-
ng with constraints will overall improve robustness to image
istortions. Clearly, additional constraints are needed to explain
he human capacity to generalise to o.o.d. datasets. All models,
oth with and without constraints, quickly deteriorated as the
mount of image degradation increased, at a similar pace. Only
he networks with Sigmoid activation showed an improvement in
ccuracy, but only for low amounts of input noise. Furthermore,
t is not clear why the effect is larger for salt-and-pepper noise
ompared with uniform noise. Finally, it should be taken into
522
ccount that in absolute terms the accuracy of ReLU networks for
niform input noise was consistently higher than that of Sigmoid
etworks. For salt-and-pepper noise, the reverse was true — CNNs
ith sigmoid activations performed better than networks with
eLU units.

. General discussion

If CNNs are to be considered models of human vision they
hould not only succeed in classifying images under conditions
n which humans succeed, but also fail under conditions in which
uman fail. Here we carried out a series of experiments that ex-
lore a striking example of CNNs outperforming humans, namely,
n their ability to classify random data, in the form of images that
ook like TV static (random pixel images) or naturalistic images
hat are randomly assigned to categories (shuffled labels), as re-
orted by Zhang et al. (2017). Our key contribution is to introduce
iological constraints to CNNs that allow them perform well on
nmodified naturalistic image data but fail on random data. These
indings suggest that these constraints, or some version of them,
hould be implemented in CNNs when modelling human vision
n order to provide better alignment between their performance
haracteristics.
To summarise, we report five main findings. First, in two

ehavioural experiments we confirm that humans perform far
orse when learning random data compared to standard CNNs
Fig. 2). In addition, we observed that humans are able to learn
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a small set of) images with randomly assigned labels, but are
ostly unable to learn images of random pixels. This behaviour
ontrasted with CNNs, which learn random pixels either more
asily (Zhang et al., 2017), or as in our simulations, learn the two
ypes of random data at similar rates, with random pixels slightly
asier than shuffled labels in some conditions and slightly harder
n others.

Second, we found that exposing CNNs to structured data (pre-
raining on ImageNet) did not prevent them from learning ran-
om data. Surprisingly, pre-training actually made it easier for
NNs to learn to classify the random datasets (Fig. 3), suggesting
hat this superhuman capacity reflects their architectures rather
han their background training history.

Third, we introduced three biologically inspired modifications
o CNNs designed to reduce their resource capacities. The addition
f activation noise designed to model neural noise was the most
mportant factor in selectively reducing performance on random
ata, but the introduction of a bottleneck (modelling the optic
erve) and a sigmoidal activation function (corresponding to the
ounded firing rate of neurons) contributed to more human-like
erformance as well (Fig. 5, Top).
Fourth, we show that these biological constraints worked by

educing network capacity rather than through some alternative
echanism. That is, we showed that CNNs with these constraints
ould still learn noise patterns, but far fewer of them (Fig. 5,
ottom). This is the pattern of results to be expected if the
anipulation interferes with capacity.
Finally, we did not find that the pre-training and the biolog-

cal constraints helped much to improve better generalisation
o o.o.d. data. Indeed, most of the networks did not improve
n, or fared worse than baseline models with no constraints
hen tasked to classify test set images perturbed with different
ypes of noise (Fig. 7). Constraints did appear to improve per-
ormance slightly in CNNs with sigmoid activations, but benefits
ere mostly restricted to low levels of one particular type of

nput noise.
What do our results say about the correspondence between

NNs and human vision? The first point to note is that our
indings highlight the importance of adding biological constraints
hat reduce CNN resource capacity when attempting to model
uman vision. Although the extraordinary success of state-of-the-
rt CNNs in image classification is often taken as evidence that
NNs are promising models of human vision, these models are
learly exploiting resource capacities that far exceed those avail-
ble to networks in the human visual system, allowing models to
earn random data almost as well as structured data. Biologically
lausible CNNs need to succeed in classifying images without the
bility to learn random data and our own findings highlight three
onstraints that appear to be relevant to this.
However, clearly the pre-training and the biological

onstraints are not enough to reconcile the CNN and human re-
ults. First, the networks do not reproduce the pattern of relative
ifficulty of the random datasets that humans exhibit. Learning to
lassify random pixel images is much more difficult for humans
han classifying structured objects in arbitrary categories. This
attern of results was not consistently observed with CNNs. And
ore importantly, the networks with capacity constraints, that
ere selectively good at classifying structured data, were not
uch better at o.o.d. generalisation. Clearly a range of additional
onstraints and perhaps new models are required to capture this
ey feature of human object recognition.
Arpit et al. (2017) have also explored how to reduce the

emorisation of random data in CNNs, although they did not con-
ider the relevance of their findings to human vision. Specifically,
hey assessed the ability of several commonly used regularisation
echniques to reduce memorisation of random data. Interest-
ngly, some of the findings of Arpit et al. (2017) differ from our
523
own results. Most relevant to our work, they concluded that
the introduction of internal Gaussian noise was ineffective as it
reduced performance on both structured and unstructured data.
By contrast, our results show that it is possible to find levels of
noise that selective impair performance on unstructured data. It
is not clear why we reached different conclusions, but it may
be explained by differences in the implementation of models.
Firstly, we applied internal noise both during training and testing
of the networks. This is not conventional practice when using
regularisers, but bears closer correspondence to the biological
brain. Secondly, Arpit et al. (2017) do not describe the method-
ological details of their procedure, such as at which points within
a network the noise is added. This lack of procedural details
prevents further comparisons between the results of the two
studies.

It is interesting to note that a similar pattern of learning
unstructured data is observed in the domain of natural language
processing as well. That is, while deep networks show impressive
successes in learning natural languages, unlike humans, they also
find it easy to learn impossible languages (Mitchell & Bowers,
2020). Both findings highlight missing inductive biases in stan-
dard CNNs that result in networks with superhuman learning
capacities in some domains. A key challenge in creating neural
network models with greater correspondence to human perfor-
mance is to introduce the relevant constraint and biases so that
models learn what they should learn (under realistic training
conditions), and at the same time do not learn what humans
cannot.

In summary, we have found that adding three basic biological
constraints to CNNs leads to them exhibiting more human-like
performance through impeding their ability to classify random
data, while preserving their ability to classify structured data.
However, models trained with the examined constraints are not
better at o.o.d. generalisation. Developing models that succeed
where humans succeed, but also fail where humans fail, is an
important challenge for future work in developing better models
of human vision.
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