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A B S T R A C T   

Researchers studying the correspondences between Deep Neural Networks (DNNs) and humans often give little 
consideration to severe testing when drawing conclusions from empirical findings, and this is impeding progress 
in building better models of minds. We first detail what we mean by severe testing and highlight how this is 
especially important when working with opaque models with many free parameters that may solve a given task 
in multiple different ways. Second, we provide multiple examples of researchers making strong claims regarding 
DNN-human similarities without engaging in severe testing of their hypotheses. Third, we consider why severe 
testing is undervalued. We provide evidence that part of the fault lies with the review process. There is now a 
widespread appreciation in many areas of science that a bias for publishing positive results (among other 
practices) is leading to a credibility crisis, but there seems less awareness of the problem here.   

1. Introduction 

Modelling in neuroscience has increasingly involved deep neural 
networks. But this line of research, sometimes called “neuro-
connectionism” (Doerig et al., 2023) or “neuroAI” (Zador et al., 2023), 
suffers from many conceptual and methodological problems that 
contribute to unwarranted conclusions and claims regarding brain rep-
resentations and processes (see Bowers et al., 2022, for an extended 
community discussion). Problems include logical fallacies (Guest & 
Martin, 2023), overclaiming (e.g., Rawski & Baumont, 2022), un-
checked degrees of freedom (e.g., Schaeffer, Khona, & Fiete, 2022), 
naive empiricism and inadequate theorizing (cf. van Rooij & Baggio, 
2021), mismatch between measurements and interpretations (e.g., 
Dujmović, Bowers, Adolfi, & Malhotra, 2023). In this article we focus on 
another problem that has has not received enough attention, namely, the 
lack of appropriate testing of empirical claims. As detailed below, it is 
becoming increasingly evident that many prominent claims regarding 
DNN-human similarities do not stand up to closer scrutiny, and in order 
to address this problem, we argue that the philosophy of severe testing is 
needed. 

2. The unique challenges of research comparing DNNs to 
humans 

All empirical sciences rely on carrying out experiments to test hy-
potheses and evaluate models of natural systems, such as brains. But 
there are some unique features of DNNs as models of brains that make 
empirical testing of claims especially challenging. 

Consider DNNs that can recognize naturalistic images of objects at a 
similar rate to humans (sometimes better) on some image datasets, such 
as ImageNet (Deng et al., 2009). This has led some researchers to hy-
pothesize that DNNs may also identify objects in a similar way to 
humans. And indeed, there is now a large literature of empirical results 
comparing DNNs to humans, and many findings have been taken to 
suggest that models do indeed learn similar representations to brains. 
For example, the observation that activation patterns of units in DNNs 
are better at predicting neuron activations in visual cortex compared to 
other models is often used to argue that DNNs are the “current best” 
models of biological vision. 

However, there are several reasons to be skeptical regarding these 
claims. The first reason to be cautious is that there may be qualitatively 
different ways to solve a given task. This makes it challenging to 
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understand how a successful DNN transforms (maps) a given input to an 
output and decide whether the model is using similar mechanisms to the 
visual system. For example, there are recent demonstrations that some 
DNNs rely on shape rather than texture when classifying objects (Her-
mann, Chen, & Kornblith, 2020), similar to humans. But when a DNN 
learns a shape-bias, is it because shape features are more predictive in 
the training dataset, or because they are easier to extract from a typical 
stimulus or because of an architectural property of the system? The mere 
fact that a DNN shows a shape-bias does not provide much evidence that 
the DNN identifies objects like humans as there are many different ways 
this outcome may have been realized, many of which will be unrelated 
to how or why a human shows a shape bias. Similarly, when DNNs do a 
good job in predicting brain activations, is it because they share similar 
representations? An alternative hypothesis is that DNNs and brain 
represent objects in qualitatively different ways, but the different rep-
resentations are correlated (confounded) in such a way that it is still 
possible to predict neural responses (Dujmović et al., 2023). We explore 
both of these examples in some detail below. 

To further complicate matters, claims regarding DNN-human corre-
spondences frequently rely on the concept of emergence — that is, 
training a network to do one task (e.g., object-recognition) leads to a 
known psychological phenomenon (e.g., shape-bias). This contrasts with 
typical models in psychology and neuroscience where models embody 
specific hypotheses and it is comparatively clearer to the researcher the 
predictions the model will make. This emergence contributes to the 
opaqueness of DNNs, and accordingly, researchers need to rely heavily 
on testing the models to assess how DNNs solve a task. But if these 
empirical tests are not carried out rigorously, they may lead to incorrect 
inferences at several stages in this research pipeline. 

First of all, it is possible that DNNs perform a task (e.g., object- 
recognition) like humans on some dataset, but their performance is 
entirely unlike humans on other datasets (e.g., when noise is added to 
images; Geirhos et al., 2018). Secondly, it is possible that the hypoth-
esised emerged phenomenon (e.g., shape-bias) only emerges under some 
very limited conditions. Finally, it is possible that even though a 
hypothesised phenomenon emerges, it differs qualitatively or quantita-
tively from the phenomemon of interest in humans. For example, it is 
possible that both DNNs and humans show shape-bias, but the properties 
of this shape-bias are qualitatively (Malhotra, Dujmović, & Bowers, 
2022; Malhotra, Dujmović, Hummel, & Bowers, 2023) and quantita-
tively (Geirhos et al., 2019) different between the two systems. 

In addition, there is very little reason, a priori, to believe that DNNs 
will be good models of human cognition. Some researchers interested in 
drawing parallels between the two systems emphasize the architectural 
or mechanistic overlaps between DNNs and the primate brain – e.g., 
convolutions in DNNs are analogous to the organization ofsimple cells in 
the primary visual cortex, learning by modifying weights in DNNs is 
analogous to modifying synapses in brains, and both DNNs and brains 
are hierarchically organized to encode more and more complex features. 

But beyond these basic similarities, DNNs and brains are different in 
countless ways, including the fact that (1) neurons in the cortex vary 
dramatically in their morphology whereas units in DNNs tend to be the 
same apart from their connection weights and biases, and (2) neurons 
fire in spike trains where the timing of action potentials matter greatly 
whereas there is no representation of time in feed-forward or recurrent 
DNNs other than processing steps. Similarly, current DNNs learn based 
on algorithms and loss-functions (back-propagation, ReLU units, 
dropout, batch-normalization) that also have very little psychological / 
biological grounding. This no doubt relates to the fact that current DNNs 
need much more supervised training to support a task compared to 
humans. Given these profound differences, there is no reason to assume 
that DNNs converge onto the same human solution when trained to 
perform a task such as object recognition. 

Given the theseconsiderations it is important to carry out rigorous 
tests on DNNs in order to avoid the incorrect inferences listed above. A 
proper grasp of what conditions make empirical tests appropriate for 

drawing these conclusions is crucial here. In this article, we argue that 
this is precisely where current approaches are falling short of the min-
imum requirements. 

Why is there so little severe testing in this domain? We argue that 
part of the problem lies with the peer-review system that incentivizes 
researchers to carry out research designed to highlight DNN-human 
similarities and minimize differences. We substantiate this claim with 
examples that illustrate how reviewers and editors undervalue the 
contribution of studies that rigorously test hypotheses relating DNNs to 
brains and cognition. But before we do this, we begin by describing what 
counts as a rigorous test. In particular, we describe the notion of severe 
testing (Mayo, 2018) and argue that following the principles of severe 
testing is likely to steer empirical deep learning approaches to brain and 
cognitive science onto a more constructive direction. 

3. What counts as severe testing 

The notion of severe testing (Mayo, 2018) allows us to conceptually 
sort out what it means for a claim (e.g., that a certain algorithmic model 
uses the same features as humans to categorize images) to be supported 
by evidence (e.g., the outcome of an experiment presenting images to 
algorithmic implementations and humans). Contrary to the a model 
comparison approach that is popular in deep learning applications to 
cognitive/neural modeling (see, for example, Schrimpf et al., 2018), it 
will be argued that the mere advantage of one model over the other in 
predicting domain-relevant data is wholly insufficient even as the 
weakest evidentiary standard. 

An entry point to the severe testing idea is through the weak severity 
requirement. Put simply, it asks the researcher to reject the possibility 
that there is evidence for a claim if nothing has been done to uncover 
ways in which the claim might be false. For instance, if certain data 
agree with a certain claim but the test method is practically guaranteed 
to find such agreement, and had little or no capability of finding flaws 
with the claim in the case they exist, then according to the severity 
requirement we have no evidence at hand. 

This first aspect of severe testing warns us not to mistake the out-
comes of inadequate tests for evidence. The second aspect of severe 
testing tackles what it means to have evidentiary support for a claim. It 
says that we only have evidence for a particular claim to the extent that 
the latter survives a stringent scrutiny. If the claim passes a test whose 
procedure was highly capable of finding departures from the claim 
where none or few are found, then we have evidence at hand. That is, for 
a certain empirical test outcome to warrant a theoretical claim, it is 
required not just that the claim agrees with the outcome. In addition, it is 
crucially required that it be unlikely the claim would have survived the 
empirical test if it were false. 

What would severe testing look like in practice? Consider a DNN 
model of object recognition that obtains a high Brain-Score. As noted 
above, the problem with using this finding as evidence that the model 
classifies objects like humans is that qualitatively different models (e.g., 
models with and without convolutions) that potentially classify objects 
in different ways (e.g., based on texture or local visual features) may 
obtain similar Brain-Scores, and indeed, there is some evidence for this 
(Conwell, Prince, Kay, Alvarez, & Konkle, 2022; Storrs, Kietzmann, 
Walther, Mehrer, & Kriegeskorte, 2021). Accordingly, it is necessary to 
provide a more severe test of this hypothesis. Fortunately, we know a 
great deal regarding the representations and processes involved in 
human object recognition (Bowers et al., 2022), and these results can be 
used for this purpose. For example, if the model classifies objects in a 
similar way to humans, then it should also show various shape con-
stancies (e.g., Pizlo, 1994), show sensitivity to various Gestalt organi-
zational principles (e.g., Wagemans et al., 2012), decompose objects 
into parts (e.g., Biederman, 1987), encode the 3D structure of objects (e. 
g., Erdogan & Jacobs, 2017), etc. If the DNN with a high Brain-Score also 
accounts for these key attributes of human vision, then the claim that it 
identifies objects like humans is much more strongly supported. This has 
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inspired the (ongoing) development of a new benchmark dataset called 
MindSet (Biscione et al., 2023) that makes it easy to provide severe tests 
of DNN-human correspondences in the domain of vision by providing 
the stimuli to simulate key psychological findings. However, this does 
not characterize current neuroconnectionism research, and in the 
following section we detail how strong conclusions have been drawn 
based on DNNs showing high Brain-Scores and a shape-bias in the 
absence of severe testing. 

At the same time, severe testing is more routinely practiced when 
testing psychological models of perception and cognition. For example, 
Stankiewicz, Thoma, and colleagues (Stankiewicz & Hummel, 2002; 
Stankiewicz, Hummel, & Cooper, 1998; Thoma, Davidoff, & Hummel, 
2007; Thoma, Hummel, & Davidoff, 2004) conducted several experi-
ments to test some detailed and counterintuitive predictions of the 
(Hummel, 2001; Hummel & Stankiewicz, 1996) model of object recog-
nition. The model was designed to reconcile the speed and automaticity 
of human object recognition with evidence suggesting people recognize 
objects on the basis of parts-based structural descriptions (representa-
tions that require both time and attention to generate) and makes 
several predictions about the effects of visual attention and changes to 
an object’s image on patterns of visual priming (i.e., an increase in 
response speed and/or accuracy as a function of repeated exposure to an 
object). Specifically, the model predicts that (a) visual priming for 
attended images should generalize across changes in location in the 
visual field, image size, and left–right (i.e., mirror) reflection; (b) 
priming for ignored images should generalize across changes in location 
and size but (c) not generalize across left–right reflection; (d) priming 
for attended images should generalize over configural distortions (e.g., 
as when an image is split vertically down the middle and the left- and 
right-hand sides of the image switch places); (e) priming for ignored 
images should not generalize across configural distortions; and (f) the 
effects of image changes (e.g., left–right reflections and configural dis-
tortions) and attention (i.e., attended vs. ignored) on visual priming 
should be strictly additive (i.e., there should be no statistical interactions 
between the two manipulations). Stankiewicz et al. (1998) demon-
strated that predictions (a), (c), and (f) obtain in human object recog-
nition data. Stankiewicz and Hummel (2002) demonstrated that 
predicted effects (b) and (f) obtain in the human data. And Thoma et al. 
(2007, 2004) demonstrated that predicted effects (d), (e), and (f) obtain 
in the human data. 

An example of severe testing falsifying a model can be seen in the 
work of Wolfe, Cave, and Franzel (1989). These authors observed that 
Treisman and Gelade (1980) Feature Integration Theory (FIT) of visual 
attention makes a strong prediction about the nature of visual search for 
a target that can only be distinguished from non-targets by a conjunction 
of two or more features, for example, when one is searching for a vertical 
red line among a field of vertical green lines and horizontal red lines. FIT 
predicts that search in such a case should be strictly serial, with response 
times (RTs) increasing linearly with the number of non-targets in the 
display (see Treisman & Gelade, 1980). Wolfe et al. (1989) demon-
strated that when the relevant features are easily distinguishable from 
one another (as in this case, red vs. green and vertical vs. horizontal), RT 
is not linear in the number of non-targets (as predicted by FIT) but is 
instead negatively accelerating. Counter to the predictions of FIT, this 
negatively accelerating function suggests that a non-target rejection 
process takes place in parallel all over the visual field even when the 
target can only be distinguished from the non-targets by a conjunction of 
features. As a consequence of this falsification, the Guided Search model 
unseated FIT as the dominant model of visual search (Wolfe et al., 1989). 
It is this sort of theory driven testing of DNNs that is needed in neuroAI. 

Of course, many questions arise as we attempt to unfold what 
severity requirements mean in practice. How many tests are enough? 
How stringent should they be? What are the relevant dimensions of 
stringency? How many flaws are too many? We acknowledge from the 
outset that these are difficult questions that research communities will 
only find partial answers to, tailored to specific domains. Still, current 

testing of DNN-brain correspondences does not even come close to any 
reasonable severity requirement (cf. Bowers et al., 2022, and the 
following sections). Therefore, it is important to encourage the com-
munity to reflect on the notions of severe testing explained here and to 
adopt a more self-critical approach to empirical claims. 

3.1. How lack of severe testing plays out: Some illustrative examples 

To illustrate how the practice of severe testing has played out in 
recent research comparing DNNs to humans, we focus two important 
lines of research used to support the conclusion that DNNs and humans 
share similar visual representations, but briefly consider additional ex-
amples in the domain of vision, memory, and language as well. 

First, multiple studies have compared the patterns of unit activations 
in DNNs to neuron activations in visual cortex (Khaligh-Razavi & Krie-
geskorte, 2014; Schrimpf et al., 2018; Yamins et al., 2014) in an attempt 
to assess whether DNNs and cortex identify objects in a mechanistically 
similar way (Cao & Yamins, 2021). There are multiple measures that 
have been used to make these comparisons and we focus on two: 
representational similarity analysis (RSA) and fitting regression models 
to predict neural activity from internal activations of DNNs. To employ 
RSA, one first has to collect neural recordings (e.g., fMRI, EEG, single 
cell recordings in case of monkeys) and internal activations from DNNs 
in response to a set of stimuli. Then, pair-wise distances for each pair of 
stimuli are computed (e.g., 1-Pearson’s r between activation vectors for 
a pair of images) both for humans and DNNs. This results in two 
representational dissimilarity matrices (RDMs), one for each system 
being compared. The RDM represents the relative distances between 
representations of objects in the dataset for a given system (see Fig. 1). 
Finally, the correspondence between RDMs is assessed, usually as a 
rank-order correlation between them. 

The second measure uses DNN activations as predictors for neural 
activity in a linear regression model and measures the amount of 
explained variance (Schrimpf et al., 2018; Yamins et al., 2014). For 
example, the Brain-Score website Schrimpf et al. (2018) includes a 
leader-board that ranks models in terms of their correspondence to “core 
object recognition” based on their overall regression predictivity of a 
number of brain datasets as well as their performance on a number of 
behavioural benchmarks. Although the RSA and linear predictivy mea-
sures differ in important ways, the claim that was made early on, based 
on both methods, was that early layers of DNNs correspond better to 
neural activity in early areas of vision (e.g., V1) while deeper layers 
correspond better to later visual processing (e.g., IT). For example, Fig. 2 
shows results from Khaligh-Razavi and Kriegeskorte (2014), where this 
claim of hierarchical correspondence was based on RSA. 

A number of more recent brain-predictivity studies have been carried 
out that investigate properties of models (architectures, learning algo-
rithms, loss functions, etc.) and training datasets that impact on corre-
spondence between primate visual representations and DNNs as 
measured by these metrics. For example, Mehrer, Spoerer, Jones, Krie-
geskorte, and Kietzmann (2021) show that this correspondence can be 
increased by training DNNs on a more ecological image dataset. In 
another study, Zhuang et al. (2021) showed that comparable (though 
not quite as high) correspondence can also be shown by some self- 
supervised models. These studies follow a general strategy of devel-
oping models designed to increase prediction scores and correspon-
dences. It is important to note, however, that the majority of studies rely 
on small number of neuro-imaging datasets that include a curated set of 
objects and object categories presented to a small number of primates 
and humans. For example, the entire suite of 5 IT benchmarks in Brain- 
Score comes from neural data of 5 macaques observing very similar 
stimuli. If, instead, the goal was to do a severe test, studies would have 
varied properties of datasets in order to verify whether central obser-
vations—such as a hierarchical correspondence between activations of 
DNNs and visual cortex—are maintained across a range of conditions 
(conditions that can test specific hypotheses regarding how DNN and 

J.S. Bowers et al.                                                                                                                                                                                                                               



Cognitive Systems Research 82 (2023) 101158

4

biological vision identify objects). In a recent study, Xu and Vaziri- 
Pashkam (2021) carried out such a controlled test. They observed that 
the claim of a hierarchical correspondence between the ventral visual 
cortex and layers of DNN did not hold up when properties of the input 
stimuli were changed (see Fig. 3), directly undermining previous claims. 

Similarly, when Sexton and Love (2022) used a different metric to 
measure correspondence—instead of RSA, their method substituted the 
activity of a layer with an activity of a brain region—they also observed 
no hierarchical correspondence between DNN and brain activity. More 
worryingly, Dujmović et al. (2023) show that previous observations of 

Fig. 1. RSA calculation. Stimuli from a set of categories (or conditions) are used as inputs to two different systems (for example, a human brain and a primate brain). 
Activity from regions of interest is recorded for each stimulus. Pair-wise distances in activity patterns are calculated to get the representational geometry of each 
system. This representational geometry is expressed as a representational dissimilarity matrix (RDM) for each system. Finally, an RSA score is determined by 
computing the correlation between the two RDMs. It is up to the resercher to make a number of choices during this process including the choice of distance measure 
(e.g., 1-Pearson’s r, Euclidean distance etc.) and a measure for comparing RDMs (e.g., Pearson’s r, Spearman’s ρ, Kendall’s τ, etc.). Figure 
adapted from Dujmović et al. (2023). 

Fig. 2. RSA scores of AlexNet layers with neural activity from human IT (A) and V1 (B). RSA scores between AlexNet layers and human neural fMRI patterns were 
computed as the Kendall τ between RDMs. The shaded region represents the estimated noise ceiling (expected human to human RSA scores). The figure was . 
adapted from Khaligh-Razavi and Kriegeskorte (2014) 
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correlations using RSA could plausibly be due to confounds present in 
datasets, rather than reflect a mechanistic similarity between the two 
systems. 

In the second line of research there has been focus on a more specific 
claim regarding visual DNN-human similarities, namely, whether DNNs 
and humans share a similar shape shape-bias. It has been long known to 
both vision scientists (Biederman & Ju, 1988; Cooper, Biederman, & 
Hummel, 1992; Riesenhuber & Poggio, 1999) and developmental psy-
chologists (Landau, Smith, & Jones, 1988; Smith, Jones, Landau, 
Gershkoff-Stowe, & Samuelson, 2002) that human object recognition 
depends heavily on the shape of objects, more so than other features, 
such as colour, texture, size, etc. There could hardly be a more basic fact 
about human object recognition. As Hummel (2013) put it: “..the study 
of object recognition consist largely (although not exclusively) of the 
study of the mental representation of object shape, and the vast majority 
of theories of object recognition are, effectively, theories of the mental 
representation of shape”. Accordingly, it might be expected that DNN 
models that perform well on predicting brain activations in visual cortex 
should also recognize objects largely based on shape. 

However, Geirhos et al. (2019) conducted a severe test of this hy-
pothesis and showed that some of the same DNNs that do a good job in 
predicting brain activations in visual cortex exhibit a strong texture-bias 
rather than a shape-bias. In order to demonstrate this they presented 
DNNs with (a) photographs of images taken from ImageNet, (b) 
“texture” images that only included the texture of an object, and (c) and 
“style transfer” images in which the texture of one object was combined 
with the shape of another, as illustrated in Fig. 4. The DNNs tended to 
classify the style transfer images on their texture rather than shape. In 

other words, DNNs trained on large image datasets were able to predict 
brain activations while relying on very different features of images 
compared to humans. 

This Geirhos et al. (2019) study nicely highlights the importance of 
carrying out severe tests before drawing inferences about DNN-human 
similarities. This research also motivated future studies attempting to 
improve DNN-human correspondences with regards to shape bias, but 
again, strong conclusions have been drawn without severe testing. The 
first attempt was made by Geirhos et al. (2019) themselves, who used 
the style-transfer (Gatys, Ecker, & Bethge, 2016) to train DNNs to clas-
sify images. That is, DNNs were trained on image datasets where shape 
but not texture was diagnostic of category. Geirhos et al. (2019) found 
that DNNs trained in this way increased their shape-bias when classi-
fying held-out style-transfer images. While this is an interesting machine 
learning solution to the problem as viewed from an engineering stand-
point, there can be no doubt about its ecological (in)validity in terms of 
cognitive science. Not only do human infants not learn object recogni-
tion based on a set of labelled examples — a problem with all supervised 
learning models — they also do not learn based on examples where the 
texture of one category is superimposed on the shape of another 
category. 

This work inspired a related and more plausible solution by Hermann 
et al. (2020), who hypothesised that the texture-bias of DNNs may be 
due to the aggressive cropping of images for the sake of data augmen-
tation during training. This cropping was thought to make texture more 
diagnostic than shape when classifying images. Indeed, Hermann et al. 
(2020) showed that decreasing the amount of cropping increased the 
shape-bias of DNNs and concluded: “Our results indicate that apparent 

Fig. 3. DNN to human correspondence as a function of network layer and brain region from Xu and Vaziri-Pashkam (2021). Contrary to the claim that early layers of 
DNNs correspond better to early areas of visual processing (e.g., V1) compared to later layers which correspond better to later areas (e.g., ventral occipito-temporal - 
VOT), results from Xu and Vaziri-Pashkam (2021) show that there is no such hierarchical correspondence. 

Fig. 4. Style-transfer training stimuli from Geirhos et al. (2019) An image from the ImageNet dataset (left) and 10 with the same shape/content but different texture/ 
style (right). 
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differences in the way humans and ImageNet-trained DNNs process 
images may arise not primarily from differences in their internal 
workings, but from differences in the data that they see” (Abstract). 
Much like the benchmark in Brain-Score (Schrimpf et al., 2018), 
different models now compete on which one manages to show the most 
shape-bias on a style-transfer dataset. One of the leading models at the 
moment is a Vision Transformer with nearly 22 billion parameters, 
trained on a dataset of 4 billion images (Dehghani et al., 2023). 

But showing that DNNs can be trained to classify style transfer im-
ages according to shape rather than texture is a weak test of the hy-
pothesis that DNNs encode shape in a human-like way. Hermann et al. 
(2020) should have carried out more severe testing before making their 
claim, such as assessing whether their model accounts for the results 
from various psychological studies concerned with shape processing in 
humans. Indeed, many psychological studies have characterized how 
humans process shape for the sake of object identification, a number of 
more recent studies have shown that current models fail to account for 
many of these findings (e.g., Baker & Elder, 2022; Baker, Lu, Erlikhman, 
& Kellman, 2018; German & Jacobs, 2020; Malhotra et al., 2023). For 
example, consider the study by Malhotra et al. (2022) who first trained 
DNNs to classify style transfer images where shape but not the texture of 
images are diagnostic of object category. As discussed above, under 
these conditions, DNNs learn a shape bias (Geirhos et al., 2019). Then 
the authors trained the model to classify a new set of novel objects 
designed such both their shape and non-shape features were diagnostic 
of object category. The DNNs switched to classifying these objects based 
on the non-shape predictive feature. Critically, even when almost all the 
weights from the pre-trained shape-biased model were frozen (e.g., 49 
out of 50 layers of ResNet50), the model learned to rely on non-shape 
features to classify the novel objects. By contrast, humans who were 
trained to classify these novel objects relied completely on shape. This 
suggests that, unlike DNNs that show shape-bias, human shape-bias is 
not simply an artifact of learning the most predictive features of objects. 

In another study, Malhotra et al. (2023) go further and examine the 
nature of shape representations in DNNs that have a shape-bias and 
compare these to human shape representations. Humans have been 
shown to be sensitive to changes in relations between object parts 
(Stankiewicz & Hummel, 1996). Robust findings show that relation 
preserving changes often go unnoticed by human observers, while 
changes in relations between object parts are routinely noticed and 
interpreted as an important change either of the object or even the object 
category (Fig. 5). In a series of simulations and experiments, Malhotra 
et al. (2023) tested DNNs (both standard and trained on the Stylized 
Images dataset) in order to determine whether DNN representations of 
shape share this property with humans. Performance measures as well as 
internal representations in this study indicated that DNNs do not share 
sensitivity to relational changes with humans. Malhotra et al. (2023) 
hypothesised that these differences between humans and DNNs origi-
nate from a difference in the goals of the two systems: while DNNs aim to 
classify their retinal images, humans aim to infer properties of distal 
objects that cause the retinal image. 

We have focused on these two lines of research that have been 
particularly important with regards to claims regarding DNN-human 
similarities in the domain of vision, but this pattern of avoiding severe 
tests is widespread. For example, Zhou and Firestone (2019) claimed 
that there was a similarity between how humans and DNNs interpret 
adversarial images — i.e., nonsense images that were designed to fool 
the networks to confidently classify them. However, when this claim was 
rigorously tested by Dujmović, Malhotra, and Bowers (2020), it turned 
out that, for the vast majority of images and participants, there were 
significant differences in which these images were interpreted by DNNs 
and humans. Similarly, several researchers have posited that grid-cells 
— similar to those found in the entorhinal-hippocampal circuit — 
emerge as a result of training DNNs on path-integration (Banino et al., 
2018; Cueva & Wei, 2018; Sorscher, Mel, Ganguli, & Ocko, 2019). 
However, when this claim was more severely tested by Schaeffer, Khona, 
& Fiete, 2022, they found that RNNs trained on path-integration almost 
never learn grid-like representations. Rather, the emergence of grid-like 
representations highly depends on a long list of specific decisions such as 
highly specific tuning of hyperparameters and design choices. Schaeffer 
et al. state: “…effectively baking in grid-cells into the task-trained net-
works. It is highly improbable that DL models of path integration would 
have produced grid cells as a novel prediction from task training, had 
grid cells not already been known to exist”. 

In some cases, the authors own findings do not support the conclu-
sions they draw. For example, in the case of language, Schrimpf et al. 
(2021) report that transformer models predict nearly 100% of explain-
able variance in neural responses to written sentences and suggest that 
“a computationally adequate model of language processing in the brain 
may be closer than previously thought”. However, as described in the 
Appendix A of the paper, the explainable variance is between 4 and 10% 
of the overall variance in three of the four datasets they analyze, and 
DNNs not only predict brain activation of language areas, but non- 
language areas as well. Accordingly, it is not clear that the observed 
similarities have anything to do with language. 

3.2. How the peer-review process may contribute to the lack of severe 
testing 

Severe testing has the potential to uncover critical insights about the 
relation between neural network models and human cognition, and a 
better characterization of DNN-human similarities is a prerequisite for 
building better models of brains and minds. So why is it frequently 
overlooked by the field? One of the reasons may be a bias against 
publishing negative results — that is, results highlighting dissimilarities 
between DNNs and humans. 

It is certainly our impression that there are more published articles 
highlighting 

DNN-human similarities compared to differences. To see if this 
impression has any validity, we looked for articles published in three 
high-profile journals (PNAS, Nature Communications, and PLOS 
Computational Biology) from 2020 to present using a Google Scholar 
search that contained at least one of the following terms “CNN” or 
“CNNs” or “DNN” or “DNNs” as well as contained both “brain” and 
“object recognition” somewhere in the text. We then read the abstracts 
to confirm whether the papers were comparing DNNs to human vision 
(in some cases the articles returned from this search did not). Our 
judgements are somewhat subjective, and a few articles might be clas-
sified differently, but we expect there would be reasonable agreement in 
the following numbers: 15 hits in PNAS, with 10 out of 12 highlighting 
similarities, 26 hits in Nature Communications, with 10 out of 11 
highlighting similarities, 29 hits in PLOS Computational Biology, with 
14 of 16 highlighting similarities. See the Appendix A where we go into 
these numbers in some more detail. 

Of course, the observation that most published research highlights 
similarities rather than differences may have multiple causes. First, it 
may reflect the fact that DNNs are indeed similar to brains and that the 

Fig. 5. Example of an object and modified variants from Malhotra et al. (2023). 
The basis object was modified to create two variants. (Rel) The first modifi-
cation consisted of a categorical change of a relation between parts of the ob-
ject. (Cood) The second modification preserved all relations but coordinates of 
some elements were shifted. 
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published studies identify important similarities. However, this is un-
likely, given (a) the numerous observations of differences in behaviour 
and internal representations highlighted by recent research (Bowers 
et al., 2022; Serre, 2019), (b) differences in architecture, learning al-
gorithms, cost functions, learning environments, etc, and (c) the fre-
quency with which conclusions are undermined by severe testing. 
Second, it is possible that researchers are excited about the promise of 
DNNs as models of brains given their phenomenal engineering successes 
and this biases researchers to focus on the similarities and ignore dif-
ferences. Third, and relatedly, there may be a bias amongst reviewers 
and editors to publish results highlighting similarities and reject studies 
that highlight differences (similar to a bias of reporting significant ef-
fects and rejecting null results in psychology and many other disciplines; 
e.g., Simmons, Nelson, and Simonsohn (2011)). These latter two possi-
bility may well interact: A bias to publishing “positive” results would 
likely incentivize researchers to look for DNN-human similarities and 
avoid severe testing that might make publishing more difficult. 

In order to gain some insight into the possibility of a publication bias, 
we searched openreview.net and neurips.cc, which publish articles 
alongside openly accessible commentary from reviewers and editors for 
leading machine learning and AI conferences such as NeurIPS, ICML and 
ICLR. In reviewing these commentaries, we came across two types of 
objections that reviewers and editors frequently make in relation to 
studies empirically comparing DNNs and human cognition: 

1. Reviewers feel that a negative result is not surprising as we already 
know that DNNs are not like humans. This type of comment places a 
premium on identifying results that are surprising over results that 
identify important differences between DNNs and human cognition. 
Here are some examples of this type of comment: 

Example 1.1. “I find the overall conclusions unsurprising. It is to be ex-
pected that DNNs will perform quite poorly on data for which they were not 
trained. While a close comparison of the weakness of humans and DNNs 
would be very interesting, I feel the present paper does not include much 
analysis beyond the observation that new types of distortion break perfor-
mance.” (Reviewer comment on Geirhos et al. (2018)). 

Example 1.2. “…DNNs and human visual system are completely different 
systems, so it seems obvious at best to conclude that they may solve problems 
‘in a different manner’ from each other.” (Reviewer comment on Malhotra 
et al. (2022)). 

Example 1.3. “In this empirical study, the authors attempt to identify a 
minimal entropy version of an image such that the image may be correctly 
classified by a human or computer… While identifying that humans are less 
sensitive to a reduction in resolution, this result is not terribly surprising given 
that networks are known to suffer from aliasing artifacts…” (Reviewer 
comment on Carrasco, Hogan, and Pérez (2020)). 

There are many other examples we could point to. For example, in 
their commentary on Bowers et al. (2022), Love and Mok (2023) write: 
“…we do not share [the authors’] enthusiasm for falsifying models that 
are a priori wrong and incomplete”. Similarly, Tarr (in press) in his 
commentary, writes: “As a field we should have a productive discussion 
about what inferences we can draw from DNNs and other computational 
models (Guest and Martin, 2023). However, such discussions should 
involve less... handwringing about what current models can’t do; 
instead, they should focus on what DNNs can do”. 

It is difficult to know how frequent these types of comments are, but 
the fact that these comments exist at all shows that at least some re-
viewers see little value in reporting negative results while comparing 
DNNs and humans. And when negative results are published, the bar for 
getting these studies through the peer-review process seems to be 
higher. In Example 1.1, for example, the reviewer argues that it is not 
sufficient to show that DNN behaviour is different from humans, authors 
should also analyse why the behaviour differs. In contrast, we have many 
examples of positive results that have been reported in the literature (see 

for example Cadena et al., 2019; Cadieu et al., 2014; Eickenberg, 
Gramfort, Varoquaux, & Thirion, 2017; Güçlü & van Gerven, 2015; 
Khaligh-Razavi & Kriegeskorte, 2014; Schrimpf et al., 2018; Yamins 
et al., 2014; Zhuang et al., 2021) where studies report a correlation 
between DNN and a human / primate without identifying why this 
correlation exists. 

In addition to the problems with incentivizing surprising results that 
we noted above, another problem with these comments is that they 
betray a lack of understanding of the value of negative results. Negative 
results do not just identify differences between DNNs and human 
cognition, they also frequently identify how the two systems differ. An 
investigation of this how question is non-trivial and, as we have argued 
in the previous section, has the potential to provide real insight into both 
human cognition and DNNs. By undervaluing such studies, the field risks 
ignoring key data points to guide future research. Fortunately, the 
Geirhos et al. (2019) study referred to in Example 1.1 has now been cited 
over 2000 times (according to Google Scholar) and provides a key 
constraint that guides existing results in developing DNNs better aligned 
to human visual system. 

2. Reviewers feel that a study lacks novelty because it is an empirical 
study and does not suggest a new model that overcomes the observed 
dissimilarities. Here are some examples: 

Example 2.1. “[Authors] are only showing that the solution selected by the 
RNN does not follow the one that seems to be used by humans… [The] paper 
would really produce a more significant contribution [if] the authors can 
include some ideas about the ingredients of a RNN model, a variant of it, or a 
different type of model, must have to learn the compositional representation 
suggested by the authors.” (Reviewer comment on))Lake and Baroni (2018. 

Example 2.2. “Overall, I think that the study can help to uncover sys-
tematic differences in visual generalization between humans and machines… 
The paper would have been much stronger if the first elements of algorithms 
that can counteract distortions were outlined. Although the empirical part is 
impressive and interesting, there was no theoretical contribution.” (Reviewer 
comment on Geirhos et al. (2018), NeurIPS). 

Example 2.3. Reviewer: “This work demonstrates failures of relational 
networks on relational tasks, which is an important message. At the same 
time, no new architectures are presented to address these limitations.”. 

Editor: “While this paper does not propose solutions, it does present 
interesting “negative results” that should get some visibility in the workshop 
track.” (Editor & Reviewer comments on Kim, Ricci, and Serre (2018)). 

Example 2.4. “An elaborate human evaluation of two tasks, face identi-
fication and verification, has been conducted… AC agrees with the reviewers 
that albeit it’s an important study, limited technical contribution (how to 
resolve existing model failures) and a narrow application domain (the paper 
studies face recognition and bias in face recognition) are two critical issues 
that place the contributions below the acceptance bar.” (Editor comment on 
Dooley et al. (2023)). 

Again, we have come across many other examples of this type of 
comment in our own work (see the following NeurIPS workshop talk by 
Bowers (2022) that provides multiple examples of reviewers and editors 
stating that falsification is not enough and that it is necessary to find 
“solutions” to make DNNs more like humans to publish: https://slide 
slive.com/38996707/ researchers-comparing-dnns-to-brains-need-to- 
adopt-standard-methods-of-science.) These comments again betray a 
clear preference for research highlighting similarities rather than dif-
ferences between DNNs and biological vision. In Example 2.3, for 
example, the paper is relegated to a workshop track because showing a 
critical failure of relational networks on relational tasks is deemed not 
worthy of the main conference. In view of these comments, it will not be 
surprising if many interesting observed differences between DNNs and 
humans go unreported. 

A healthy back and forth within a field of research is to be expected. 
Indeed, if we look at the history of vision research, we will find opposing 
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claims being tested by multiple research groups over years or even de-
cades. Nuanced research, refining theories, severe testing – these are all 
necessary in order to push a field forward. However, the trend we 
described through examples above does not follow that healthy pattern. 
Rather, we see many examples of strong claims based on weak tests, 
while nuanced studies more severely testing these claims are under- 
represented in the literature. From the reviewer / editor comments we 
have highlighted above, it also seems clear that (at least some) reviewers 
do not view reporting negative results as valuable as constructing new 
models—a worrying trend for anyone interested in the benefits and 
limitations of using DNNs to understand human cognition. 

4. Discussion 

We make two general points in this paper that have a number of 
implications for the field of neuroAI. First, we highlight how the 
empirical research comparing DNNs to biological vision often fails to 
include severe testing of hypotheses, and this is leading to many un-
justified conclusions. In our view, researchers need to modify their 
methods to include severe testing and consumers of research need to be 
more aware of these limitations when evaluating the research findings. 
Second, we consider why the field has largely avoided severe testing. 
Here we argue that the current review process is incentivising re-
searchers to look for DNN-human similarities and downplay their dif-
ferences. It will be important for reviewers and editors to evaluate the 
extent to which research includes severe testing of hypotheses in order 
to ensure claims regarding DNN-human similarities are well motivated. 

With regards to the research, we have (i) elaborated on what such 
severe testing involves, and (ii) illustrated how the lack of severe testing 
characterises research comparing DNN and human vision in two sepa-
rate lines of research. We could have focused on many other examples, 
and indeed, at the time of writing, there is much excitement regarding 
Large Language Models (LLMs), where we believe comparisons are 
being made with human cognition (Caucheteux, Gramfort, & King, 
2022; Mahowald et al., 2023; Piantadosi, 2023; Schrimpf et al., 2021; 
Tuckute et al., 2023) without rigorously testing these claims. We simply 
focused on two lines of research in the domain of vision and object 
recognition that is closely related to our own work that illustrate the 
problems quite concretely. 

It is important to be aware of the many different ways the lack of 
severe testing manifests itself. In some cases, severe tests have simply 
not been carried out and strong claims are made simply based on the 
observation of a correlation (see Bowers et al., 2022, for a number of 
examples). But in other cases, authors claim to have carried out strong 
tests of hypotheses but these tests fall short of the severe tests standard 
identified above. This happens in at least three forms. First, authors 
make a strong claim but, in reality, test a much weaker claim. For 
example, authors might claim that humans can decipher how DNNs 
classify adversarial images, but only test whether DNNs and humans 
agree in their classification of a small subset of these images under some 
limited experimental conditions. When the claims are tested more 
severely they are falsified (see Dujmović et al., 2020). Second, authors 
sometimes argue that their procedure represents a “strong test” that a 
model is similar to humans, but note in the Discussion or in an Appendix 
A important qualifications that dramatically weaken the conclusions 
that should be drawn. For example, emphasizing in the body of the 
article that large language models account for 100% explainable vari-
ance of human BOLD signals, and noting in an Appendix A that 
explainable variance is extremely small and that similar BOLD predic-
tion success occurs in non-language areas (Schrimpf et al., 2021). Third, 
authors may argue that an observed phenomenon emerges due to some 
feature of the training conditions, while in reality there are many other 
features of the training conditions (hyper-parameters, specific training 
dataset, etc.) that are required to observe the emergent phenomenon 
(Schaeffer, Khona, & Fiete, 2022). In each case, the authors (and 
readers) may fall prey to a kind of motte-and-bailey fallacy (Shackel, 

2005), making a strong claim that is unwarranted by data and retreating 
to a more modest claim when challenged. 

With regards to the incentives of the field that discourage severe 
testing, we argue that the current peer-review culture may be playing a 
role. Not only do most articles published in high profile journals make 
strong claims regarding DNN-human similarities, we provide examples 
of reviewers and editors undervaluing studies that challenge these 
conclusions through severe testing. Indeed, reviewers and editors often 
claim that “negative results” — i.e., results that falsify strong claims of 
similarity between humans and DNNs — are not enough and that “so-
lutions” — i.e., models that report DNN-human similarities – are needed 
for publishing in the top venues (see example 2.1–2.4 quotes). Again, for 
many more examples, see Bowers et al. (2022). 

Interestingly, similar issues have been raised in an engineering 
context in which there is no consideration of whether DNNs are like 
humans. In a NeurIPS talk, Kilian Weinberger (https://slideslive.co 
m/38938218/the-importance-of-deconstructionpoints) criticizes the 
common practice of publishing models based on their performance 
without acting like a scientist and deconstructing the models to deter-
mine what aspects of the model are responsible for their success. He 
details three examples where his research team developed a complex 
model that solved an important task, but when they deconstructed the 
success of the model, it turned out that the key innovation was often 
trivial and not what they expected. Importantly, Weinberger highlights 
how the incentive structure in academia does not encourage this 
approach to research: before deconstruction, the paper was easily pub-
lishable, and after additional work that identifies the causal mechanisms 
of the success, the paper is more difficult to sell. Despite the obvious 
similarity to the situation with neuroAI, it is also important to emphasize 
an important difference. The main objective of the engineer is to solve a 
problem, and a complicated black box that solves an interesting problem 
may still be useful. By contrast, the main objective of researchers 
comparing DNNs to humans is to better understand the brain through 
DNNs. If apparent DNN-human similarities are mediated by qualita-
tively different systems, then the claim that DNNs are good models of 
brains is simply wrong. 

More generally, there is now a widespread appreciation in many 
areas of science that a strong bias for publishing positive results (among 
other practices) is leading to a credibility crisis. Central to fixing this 
crisis is modifying the peer review process so that null results can be 
more easily published. Of course, the problem persists, but at least there 
is extensive discussion of the broader issues in the literature (e.g., see the 
special issue introduced by (Proulx & Morey, 2021), and concrete steps 
to better understand the problems and their root causes have been made 
(e.g., Buzbas, Devezer, & Baumgaertner, 2023; Devezer, Navarro, Van-
dekerckhove, & Buzbas, 2021; van Rooij & Baggio, 2021). Some solu-
tions have been proposed, such as the Reproducibility Project: 
Psychology (https://osf.io/ezcuj/) where researchers attempt to repli-
cate past findings (and where null results are commonplace), and the 
introduction of registered reports in some journals where manuscripts 
are accepted or rejected prior to carrying out the research to prevent a 
bias against negative outcomes, and multiple papers highlighting the 
problem. The specific solutions in psychology and other areas may not 
be appropriate to the current context, but there needs to be a similar 
recognition of the problems and active attempts to improve the pro-
cesses by which papers are assessed. Of course, there is some recognition 
of these issues and some attempts to address the problems (e.g., the “I 
can’t believe it’s not better workshop” at NeurIPS that invites papers 
that report unexpected null findings or criticisms of standard practices), 
but the field is far behind others in this respect. Consequently, it is quite 
likely that many published claims regarding DNN-human similarities are 
false. We hope this article helps to fuel this conversation as it is needed 
for the development of better models of brains and mind that even the 
critics are hoping to see. 
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Appendix A 

In Google Scholar we used the search terms (1) “DNN” or “DNN” or 
“DNNs” or “DNNs”; 

(2) “brain” and “object recognition”; and (3) a specific journal or 
conference proceeding. We then read the abstract to assess whether 
indeed the paper was assessing the similarity of a DNN to human (or 
monkey) vision. In the case of searching the journal Proceedings of the 
National Academy of Sciences we obtained 14 hits.  

1. Mehrer et al. (2021) - An ecologically motivated image dataset 
for deep learning yields better models of human vision.  

2. Golan, Raju, and Kriegeskorte (2020) - Controversial stimuli: 
Pitting neural networks against each other as models of human 
cognition. 

3. Sorscher, Ganguli, and Sompolinsky (2022) - The neural archi-
tecture of language: Integrative modeling converges on predic-
tive processing. 

4. Firestone (2020) - Performance vs. competence in human-
–machine comparisons. 

5. Sablé-Meyer et al. (2021) - Sensitivity to geometric shape regu-
larity in humans and baboons: A putative signature of human 
singularity.  

6. Schrimpf et al. (2021) - The neural architecture of language: 
Integrative modeling converges on predictive processing.  

7. Zhuang et al. (2021) - Unsupervised neural network models of the 
ventral visual stream. Proceedings of the National Academy of 
Sciences.  

8. Hannagan, Agrawal, Cohen, and Dehaene (2021) - Emergence of 
a compositional neural code for written words: Recycling of a 
convolutional neural network for reading.  

9. Michaels, Schaffelhofer, Agudelo-Toro, and Scherberger (2020) - 
A goal-driven modular neural network predicts parietofrontal 
neural dynamics during grasping.  

10. Saxena, Shobe, and McNaughton (2022) - Learning in deep neural 
networks and brains with similarity-weighted interleaved 
learning.  

11. Jozwik et al. (2022) - Face dissimilarity judgments are predicted 
by representational distance in morphable and image- 
computable models.  

12. Jagadeesh and Gardner (2022) - Texture-like representation of 
objects in human visual cortex. 

13. Liu et al. (2020) - Stable maintenance of multiple representa-
tional formats in human visual short-term memory. 

14. Tsao and Tsao (2022) - A topological solution to object segmen-
tation and tracking. 

Articles 13 and 14 can be excluded as they are not addressing the 
relation between DNNs and human vision. Of the 12 remaining relevant 
studies, all emphasize the similarities of DNNs and human vision or the 
promise of DNNs as models of human vision, with the partial exception 
of articles 2 and 5. Article 2 highlights the value of designing a new type 
of stimulus (controversial stimuli) that provide a more severe tests of 
DNN-human vision correspondences (much in line with the approach 
adopted here). The authors reported lower RSA scores for models tested 
with these images. Article 5 shows that human vision is sensitive the 

geometric shape regularities whereas baboon vision and feed-forward 
DNNs are not. The authors suggest that symbolic processes may be 
missing from current DNNs. 

More briefly, a similar outcome was obtained when we used the same 
search terms for Nature Communications, with 29 hits, and after reading 
the abstracts we identified 11 papers that assess the similarity of DNNs 
and human vision, with 10 papers emphasizing similarities. The one 
clear exception highlights how RSA scores are much smaller than past 
reports with a new fMRI dataset:  

• Xu and Vaziri-Pashkam (2021) - Limits to visual representational 
correspondence between convolutional neural networks and the 
human brain. 

Adopting a somewhat looser criterion you might note that the article 
by Jacob, Pramod, Katti, and Arun (2021). also highlighted some limi-
tations of DNNs as models of vision:  

• Jacob et al. (2021) - Qualitative similarities and differences in visual 
object representations between brains and deep networks. 

But the later authors are clearly highlighting the promise of DNNs, 
concluding the abstract with: “These findings indicate sufficient condi-
tions for the emergence of these phenomena in brains and deep net-
works, and offer clues to the properties that could be incorporated to 
improve deep networks”. 

Similarly, using the same search terms, we obtained 30 hits in PLOS 
Computational Biology and estimate that 14 out of 16 studies highlight 
the promise of DNNs as models of human vision, the two exceptions 
being: 

• Malhotra et al. (2022) - Feature blindness: a challenge for under-
standing and modelling visual object recognition.  

• Bornet, Doerig, Herzog, Francis, and Van der Burg (2021) - Shrinking 
Bouma’s window: How to model crowding in dense displays. 

The first article highlights how current DNNs do not have the same 
inductive biases to rely on shape when learning to classify novel stimuli. 
The second article shows that DNNs cannot account for the phenomena 
of “uncrowding”, although they did find some non-DNN models could, 
including Capsule networks (Sabour, Frosst, & Hinton, 2017). 
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Malhotra, G., Dujmović, M., Hummel, J., & Bowers, J. (2023). Human shape 
representations are not an emergent property of learning to classify objects. Journal 
of Experimental Psychology: General. in press. 

Mayo, D. G. (2018). Statistical inference as severe testing: How to get beyond the statistics 
wars. Cambridge; New York, NY: Cambridge University Press.  

Mehrer, J., Spoerer, C. J., Jones, E. C., Kriegeskorte, N., & Kietzmann, T. C. (2021). An 
ecologically motivated image dataset for deep learning yields better models of 
human vision. Proceedings of the National Academy of Sciences, 118(8). 

Michaels, J. A., Schaffelhofer, S., Agudelo-Toro, A., & Scherberger, H. (2020). A goal- 
driven modular neural network predicts parietofrontal neural dynamics during 
grasping. Proceedings of the National Academy of Sciences, 117(50), 32124–32135. 

Piantadosi, S. (2023). Modern language models refute chomsky’s approach to language. 
Lingbuzz Preprint, lingbuzz/007180 . 

Pizlo, Z. (1994). A theory of shape constancy based on perspective invariants. Vision 
Research, 34(12), 1637–1658. 

Proulx, T., & Morey, R. D. (2021). Beyond statistical ritual: Theory in psychological 
science. Perspectives on Psychological Science, 16(4), 671–681. 

Rawski, J., & Baumont, L. (2022). Modern Language Models Refute Nothing. 
Riesenhuber, M., & Poggio, T. (1999). Hierarchical models of object recognition in 

cortex. Nature Neuroscience, 2(11), 1019–1025. 
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